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ABSTRACT 

A study is made of topological and cardinality properties of the set of extreme 
points of bounded closed convex sets with interior in reflexive Banaeh spaces. 
Some related results, and applications to earlier work, are obtained as co- 
rollaries. 

0. Introduction. The starting point for this paper is the observation that the 
set ext U of extreme points of the unit ball U of a reflexive Banach space E must be 
uncountable. It follows that if E is separable, then ext U cannot be an isolated 
set in the norm topology (a result which is shown to fail for a certain nonsepar- 
able space). Another easy consequence of the first theorem is the fact that any 
convex body in E has uncountably many extreme points. Examples are given and 
a problem posed concerning similar questions for certain subsets of the extreme 
points (exposed points, strongly exposed points), and applications of the first 
theorem are made to questions which arose in studying extensions of  compact 
operators [3]. A brief final section deals with certain convex sets having countably 
many extreme points. 

We wish to thank Professor Harry Corson for a number of stimulating dis- 
cussions concerning the subject matter of this paper. 

1. Extreme points of convex bodies in reflexive spaces. 

Tti-EORI~tV/ 1.1. I f  E is an infinite dimensional reflexive Banach space, then the 
set ext U of extreme points of the unit ball U orE is uncountable. 

Proof. Suppose that ext U = {x.}~= 1 and for each n let 

F.  = { fEE* :  Ilsll =< a and [f(x.)[ = Ilfll)  

It follows from the weak lower semicontinuity of  the norm in E* that each F.  is 

weakly closed. From the reflexivity of E and the Krein-Milman theorem applied 

to U it follows that the weakly compact unit ball U* of E* is the union of the sets 
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F,, n = 1, 2,....  By the Baire category theorem, at least one of the sets F,  (say FI) 
has nonempty weak interior relative to U*. Let fo be a relative weak interior point; 
without loss of generality we can assume that []f0 [[ < 1. Thus, there exist points 
Yl,Y2, "", Y, in E such that f e  F1 whenever 

(*) ]If l] __< I and ](f-fo)(y,)l < i, = 1,2,...,n. 

To obtain a contradiction from this, let N = ( f e  E*:f(yi) =fo(Y~), i = 1, 2, ..., n 
and f ( x l )  =fo(xl)}. Since E is infinite dimensional, this flat of finite codimension 
contains a line through fo, which necessarily intersects the unit sphere in a point g, 
I] g [] = 1. Since g e N, the condition (*) implies that g ~ t l ,  so 1 = ]t g ][ = I g(xl)[ 

= ISo(x,) I = IlSo II, a contradiction. 
If  E is a Banach space over the complex numbers, then x is an extreme point 

of the unit ball U of E if and only if 2x is an extreme point, for each [ 2 [ = 1. 
Thus, the existence of one extreme point implies the existence of uncountably 
many. If, however, we define two extreme points x and y to be equivalent provided 
x = 2y for some [ 21 = 1, then it makes sense to ask whether U can have countably 
many equivalence classes of extreme points. The proof of Theorem 1.1 applies 
without change to show that if E is reflexive and infinite dimensional, then the 
answer is negative. 

A convex body is a bounded closed convex set having nonempty interior. 

COROLLARY 1.2. I f  F is an infinite dimensional reflexive Banach space and if C 
is a convex body in F, then ext C is uncountable. 

Proof. Let E = F  x R, with the norm [[(x,r)[[ =max( l [xH, l r [ ) .  It is clear 
that E is reflexive. Define an equivalent norm on E by taking the new unit ball to be 
the convex hull of C1 and - C1, where C1 = {(x, 1): x a C}. It follows that with this 
norm, E is still a reflexive Banach space. Since ext U = ext Cx u ( - ext C1), 
the set ext Ct (hence ext C) is countable. 

Let us remark that Corollary 1.2 iml:lies in particular that if  K is a w compact 
countable set in an infinite dimensional Banach space E then the interior of 
C = C o n v  K is empty. Indeed assume that the interior of C is not empty. Since 
C is w compact, by a well known result of Krein, it follows that E is reflexive. 
But since ext C c K w e  get a contradiction to Corollary 2.1. 

If  E is a separable reflexive Banach space, then every convex body C in El is 
compact, metrizable and separable (in the weak topology), so that ext C is 
separable and metrizable. Moreover, ext C admits an equivalent complete metric, 
since it is a G~ in the compact set C. If  E is infinite dimensional, then ext C is 
uncountable. We suspect that this is all that can be said, i.e., it is probably true that 
if X is an uncountable separable complete metric space, then X is homeomorphic 
to the set ext C (in the weak topology) for some convex body C in 12. We have 
not been able to prove such a result, although we can show that if X is a compact 
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uncountable metric space, then such a set C exists. The proof of this is complicated, 
and we present below a less general result which has a s i m i l a r -  but s i m p l e r -  
proof. 

PROPOSITION 1.3. Suppose that X is a compact metric space and that 
X =X1 w X2, where X 1 and X 2 are uncountable, closed and disjoint. Then 
there is a convex body C in a separable Hilbert space H such that X is homeo- 
morphic to ext C (in the weak topology). 

Proof. Let H = H i  ~)H2, where H1,H 2 are copies of the space 12. Since 
C(Xa) is separable, a standard construction allows us to map X1 homeomorphi- 
tally into H2: Choose a sequence {f,}~= 1 which is dense in the unit sphere of 
C(X1) and define ~q: X 1 ~ H 2 by 

~/tx =(2,8-1fl(x),  8-2f2(x), "" 8 - " f , ( x ) , ' " ) ,  x e X  1. 

In addition to being a homeomorphism, ~1 has the property that II a - $ l x  II < x/4 
f x e Xt, where a = (2, 0, 0,...) e H2. We can define a similar map ~2 of X2 into 
H1, such that II b - ¢,2x II < 1/4 if b = (2, 0, 0 , . . . )  and x e X2. 

Since X~ is an uncountable compact metric space, it contains a homeomorphic 
copy of the Cantor set [2, p. 445], which can itself be mapped continuously onto 
[0,1]. By Tietze's extension theorem, then, we can map X~ continuously onto 
[0, 1]. By the Hahn-Mazurkiewicz theorem, we can map [0,1] continuously onto 
the weakly compact and weakly metrizable unit ball of H1. Let ~bt denote the 
composition of these two mappings, and let q~2 denote the analogous mapping 
of X2 onto the unit ball of H2. We can define a map F: X ~ H~ ~ H2 as follows: 

F(x) = (~zX, ~tx) x ~ X~ 

F(x) = (~k2x, ~b2x) x e X2. 

The function F is clearly continuous, so it will be a homeomorphism if it is one-to- 
one. If x, y e X :  with x # y, then $ t x #  ~qy so F(x) # F(y); similarly for points 
in X2. I f x e X ~ ,  y e  X2, then the first coordinate of q~tx is at most 1, while that 
of $2x is 2. Denote the closed convex hull of F(X) by C; we must show that 
extC = F(X) and that C has nonempty interior. Since F(X) is compact, we 
know that ext C c F(X). To show that each point of F(X) is extreme, suppose 
x ~ Xt, say, and choose, by the (reformulated) Krein-Milman theorem (cf. e.g. [6]) 
a Borel probability measure/z on F(X) which represents F(x), i.e., which satisfies 

= f (Fy, u)dla(Fy), u e H .  (Fx, u) 
dg (xl 

Since F is a homeomorphism, we can consider # to be a measure on X and this 
formula becomes 
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(*) (Fx, u) = fx (Fy, u) d/~(y), u H. 

To show that Fx is extreme we must show that p is the point mass at x. Now, if 
u = (0, b[2), then (Fy, u) = 2 for any y in X 1 and hence (*) becomes 

2 = f x  2d# +fx (d?2y'b/E>d#<Elt(Xx)+l~(X2) 
1 2 

since I1 tk2y ]l <= 1 = 1] b[2 I]" Since #(X2) = 1 -/~(X1) this implies that/1(X2) = 0  
and tha t / ,  is a probability measure on Xt. Now, our definition of ~Ot shows that 
if u is evaluation at the (n + 1 ) -  st coordinate in H2 (n > 1), then 

( F x ) . + l  = 8 -"  L(x) = f  8 ~ ~fj*l(y) d/.~( y ) ,  
d x  1 

Since the linear span of {f,} is dense in C(Xa), we conclude that p is the point 
mass at x. 

We now complete the proof by showing that p = (½a,½b) is in the interior of C. 
It is a consequence of the separation theorem that it suffices to prove that for any 
w in H of norm 1, 

(**) inf(C,  w) + 1/4 < (p, w) =< sup (C, w) - 1/4. 

Writing w = (u, v) (u ~H~, veil2), we can take the (equivalent)norm 

II w II = max(ll  u II, II v II) on H, and thus assume that II u I1 -- 1 _> IIv II Choose x= in 
X2 such that ~b2(12) = 0 and let r = F(x2) = (~2(x2), 0). Since 11 ~=(x2) - o II < 1/4, 
we have 

[ (r,  w)  - (a ,  u ) l  < 114. 

Let s = F(xt) where xt e X and (~bx(xt),u) = II u II = a and let s, = F(x'~) where 
(~bl(x~), u ) =  - 1. Then we have 

<s,w> = < ~ i ( x 0 , u >  + <¢~(x~),v> = 
= 1 + (b,  v)  + (~Ol(Xl) - b, v) 

1 + (b, v) - 1/4 = 3/4 + (b,v) .  

Similarly, (s ' ,  w) __6 - 3[4 + (b, v), so 

(½(r +s),w) > ( l /2)[ (a ,u) -  114 + 3/4 + (b,v)] 

= (½(a + b) ,w)  + 1[4. 

Similarly, (½(r +s'),w) < (½(a + b ) , w ) -  1/4. Since ½(r +s),  ½(r + s ' )  are 
in C, this yields (**) and completes the proof. 

It should be noted that G. Choquet has proved [1] that if X is a complete 
separable metric space, then X is homeomorphic to extK for some compact 
convex metrizable simplex K in some locally convex space. 
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2. Applieatioas of Theorem 1.1. Since any set of isolated points in a separable 
metric space is countable we have an immediate corollary to Corollary 1.2, 
which shows that a convex body in an infinite dimensional reflexive space cannot 
be too much like a polytope. 

COROLLARY 2. I. If C is a convex body in an infinite dim ensionalseparable reflexive 
Banach space, then the extreme points of  C are not isolated in the norm topology. 

Surprisingly the above corollary fails if we do not assume separability. This is 
shown below, but we first need a well-known lemma and a definition: A subset N 
e r a  normed linear space is called an e-net if  for some e ~ 0, we have II x -  y II ~ e  
whenever x and y are distinct points of N. 

LEMMA 2.2. Suppose that E is a normed linear space and that N is a maximal 
e-net in the unit sphere of E. Then the closed convex hull of N contains the ball 
at 0 of radius 1 - e. 

Proof. If  the conclusion were to fail, we could find x in E and f in E* with 
Ilxll _~ 1 -  e, ][f[[ = l a n d f ( x ) > s u p f ( N ) . F o r a n y 6 > O w e c o u l d c h o o s e y i n E ,  

y = 1, such that f ( y )  > 1 - 6. By maximality of N, there would exist z in N 
with e > [I y - z [1 >=f(y) - f ( z ) .  Thus, supf(N) > f ( z )  > f ( y )  - e > 1 - ~ - e for 
any 6 > 0, so 1 - e __< supf(N) < f ( x )  ___ [[ x !1 --< 1 - e, a contradiction. 

EXAMPLE 2.3. Let H denote the Hilbert space which has Hilbert dimension 
equal to the power of the continuum N and let 0 < e < 1/2. Then there is a 

symmetric convex body C in the unit ball of H such that II x - y II ~ for any 
two distinct extreme points x and y of C. 

Proof. Choose an orthonormal basis for H of the form 

u {e~,,: ~c / l}  

where card A = N and the union is taken over the set of all ordinals r/with card r/ 
< N. For each r/, let H~ be the closed linear span of {e~,~: ~ e A ,  ~ <= rl}. I f x E H ,  
then x is in the closed linear span of at most countably many basis elements 
e,°.~ n, n =1 ,2 , . - . .  If  ~/= maxr/,, then cardr /<  N and xeH~.  Thus, H = wH~. 

We will construct a certain maximal symmetric e-net N in the unit sphere of H 
and take C to be the closed convex hull of N. (Note that "maximal symmetric" 
easily implies "maximal".)  The e-net N will be the union of symmetric maximal 
e-nets N~, where we define N~ in the unit sphere of each H,  by transfinite induction. 
If  r/ is a limit ordinal, take N~ to be any maximal symmetric e-net containing 
the (symmetric) e-net 

LI {N~,: t f  < tl}. 

Assuming we have chosen N~, construct N~+ 1 as follows: 
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Let  T be all points  o f  the unit  ball o f  Hn which have n o r m  > e, are in the weak 

closure o f  N~, but  are not  in N~. The set T is symmetr ic  (since N~ is), so we can 

write T =  S w ( - S ) ,  where S and - S  are disjoint and  S = {xi: i e I }  for  some 

index set L The space H~ has Hilber t  dimension N, hence has cardinali ty N. 
This  implies tha t  card I < N, so we can find a one- to-one m a p  r f rom I in to  A. 

This defines a one- to-one m a p  xi'--,e, to,~+l f rom S into {e~.~+l :~eA}.  (For  
simplicity o f  notat ion,  we will d rop  the index ~ /+  1.) 

F o r  e a c h / i n  I let 2i > 0 be such that  1 = II x, ÷ 2,er,0 II 2 = II x, 112 +,~2, and  let 

M = N~ U {___ [xt ___ 2ie, o)] : i ~ I} 

where we take all possible choices of  signs. The set M is obviously a symmetr ic  

subset o f  the unit  sphere o f  H~+ 1 ; we will show that  it is an  e-net. First, note  that  

any  element x, in S satisfies e 2 < 2 - 2 II x, 112. Indeed,  if  yp is a net in N~ converging 

weakly to xi, then for  yp # yr we have 

e2 --- II y,  - y~ II 2 -- 2 - 2(y a, y,). 

Tak ing  the weak limit first over  y then over  fl yields e 2 < 2 - 2(x,, x~) = 2 - 2 Ilx, II 2, 
which was to be proved.  T o  see that  M is an 8-net, suppose that  u and v are distinct 

elements of  M ;  we must  show tha t  II u - o  II z e. There  are four  cases to  consider:  

I. u = x~ + 2~e,~i), v = + x~ - 2~e,t o. In this case, 

[ l u - o i l  2 =  Ilx,+-x, II ~ ÷ 4 g  >__ 422 =4(1-[I x, ll2)____ 2e 2. 

II.  u = x~ + 2ier( 0, v = - x~ + 2ie,( 0. Here,  

II u - o  II -- 2 II x, II > 2,. 

I I I .  u e N~, v = x~ -t- 2~e,t 0. Since e~¢ 0 .1_ H~, we have 

II u - ~  I12 = U" - x, 112 + II x , - ~  II 2 = x - 2(u, x,) ÷ II x, I12 + g 

= 2 - 2(u,x~). 

We can choose a net {yp} in N~ converging weakly to xz, with yp # u. Thus,  

2 - 2(u,x,)  = lira [2 - 2(u, yp)] = lira II u - y~ II ~ ~ ~2. 

IV. u = x~ + 2~e,c o, v = x~ + 2je, o ), i # j .  The  vectors + 2~e,o ), + 2je,cj) and 

x~ - x j  are pairwise or thogonal ,  so 

II u - o  II 2 -- II u - x, I1 ~ ÷ II x , -  ,,~ II 2 ÷ II ~ - ~  II 2 --- g ÷ ~2 

e2/2 ÷ e2/2. 

This shows that  M is a symmetr ic  e-net, and we can choose a maximal  symmetr ic  
e-net N.+x  in the unit sphere o f  H~+:  which contains M ;  this completes  the 

induction.  
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Let N = u N~; it is easily verified that N is a maximal symmetric 5-net in the 
unit sphere of  H. Let C - - c l c o n v N ;  by Lemma 2.2 C has nonempty interior. 
Each point of  N is extreme (even "strongly exposed," see the definition preceding 
Proposition 2.6) in the unit ball of  H, hence has the same property in C. We must 
show that C has no other extreme points. If  x ~ ext C, x ¢ N, then x is in the weak 
closure of  N, but not in int C. By Lemma 2.2 again, II x II 1 - 5  and since 5 < 1/2, 
I1 x II > 5. Since x e C it is the limit of a sequence {xn} of  convex combinations 
of  elements of N = u N~. Each xn is in the convex hull of some N~n, so if ~ = max r/,,, 
then x is in the dosed convex hull C~ of N r Clearly, x is extreme in C~, so it is in 
the weak closure of  N r Our construction shows that x is a nontrivial convex 
combination of two elements in N~+ ~, a contradiction which completes the proof. 

We now present some further applications of  Theorem 1.1. 
A normed linear space E is said to have the 3.2 intersection property if it sat- 

isfies the following: 
Whenever B~, B2 and B3 are closed balls in E and B~ n Bj is nonempty for each 

i and j ,  then B~ n B2 n Ba is nonempty. The Banach spaces with this property 
have been studied in [3]. They are useful in the study of extensions of  operators, 
and (as shown in [3, Ch. 4]) they form a class of spaces which contains the C(X) 
and L~(p) spaces and is closed under 11 or loo direct sums (of arbitrary cardinality). 

COgOLLARY 2.4. I f  E is an infinite dimensional reflexive Banach space, then E 
does not have the 3,2 intersection property. 

Proof. It is proved in [3, Theorem 4.7] that the 3,2 intersection property 
implies that ]l x - y  [[--2 whenever x and y are distinct extreme points of  the 
unit ball of  E. In [3, Theorem 4.4] (and the subsequent remark) it is shown that 
any infinite dimensional Banach space with the 3,2 intersection property contains 
a separable infinite dimensional subspace with the same property. The proof  is 
now an immediate consequence of Corollary 2.1. 

Suppose that E is a closed subspace of  the Banach space F. A map ~b from E* 
to F* is a continuous norm preserving extension map [3] provided it is continuous 
in the norm topologies and satisfies 

[[ ~fl[ = [lf[[ and ~bf extends f ,  for each f in E*. 

It is known [3] that a finite dimensional space E has the property that such a map 
exists for every F DE if and only if the unit ball U of E is a polyhedron, i.e. if and 
only if ext U is isolated. In infinite dimensional spaces, the above property implies 
that ext U is isolated [3], but Example 3.2, combined with the following corol- 
lary, shows that the reverse implication fails. 

COROLLAgY 2.5. Suppose that E is an infinite dimensional reflexive Banach 
space. Then there exists a Banach space F ~ E for which there is no continuous 
norm preserving extension map from E* to F*. 
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Proof. Suppose, to the contrary, that such a map exists for each F ~ E. We 
need only show that there is an infinite dimensional separable closed subspace 
M of E which has the same property. Indeed, from [3, p. 94] we know that this 
property implies that the extreme points of the unit ball of M* are isolated, and 
Corollary 2.1 yields a contradiction. Now, by [5, Proposition 1] there exists (in 
any reflexive space E) a separable infinite dimensional closed subspace M of E 
and a projection of norm 1 from E onto M. By the same argument as was used in 
[3, pp. 88-89] it follows that M has the desired property. 

(It follows from the proof of Theorem 7.6 of [3] that the above space F can be 
chosen to satisfy dim FIE = 1.) 

A point x in a convex subset C of a topological vector space E is said to be an 
exposed point of C if there exists f in E* such that f (x)  = supf(C) > f (y)  whenever 
y e C, y # x. Obviously, every exposed point of C is an extreme point. This leads 
to the following problem: 

PROBLEM. Can the unit ball of an infinite dimensional reflexive Banach space 
have countably many exposed points? 

It follows from [5, Corollary 1] that the exposed points of the ball are always 
weakly dense in the extreme points. Branko Griinbaum has shown (oral com- 
munication) that there exists a three dimensional space with unit ball U such that 
ext U is uncountable but the set of exposed points of U is countable. 

It is known ['4] that in a separable Banach space, every weakly compact convex 
set C is the closed convex hull of the set str exp C of its strongly exposed points. 
(A point x in a convex set C is strongly exposed provided there exists f in E* 
with f (x)  = supf(C) such that f (x , )  ~ supf(C), x, e C, implies II x - x, II ~ 0.) 
Thus, such points are weakly dense in the set ext C. 

PROPOSITION 2.6. I f  E is an infinite dimensional separable reflexive Banach 
space, then there exists a symmetric convex body U in E which has countably 
many strongly exposed points. 

Proof. Choose 0 < ~ < 1 and let N be a maximal symmetric e-net in the unit 
sphere of E. By Lemma 2.2, the closed convex hull U of N has nonempty interior, 
hence is a symmetric convex body. It follows easily from the definition of strongly 
exposed point (and the fact that N is norm dosed) that str exp U ~- N. As noted 
above, U is the closed convex hull of str exp U, so the latter is infinite and (since E 
is separable and N is norm isolated) countable. 

Note that even though strexp U is countable, its weak closure contains the 
uncountable set ext U. 

3. Dual unit balls with countably many extreme points. 

THEOREM 3.1. Suppose that E is a normed linear space and that the unit ball 
U* of E* has countably many extreme points. Then 
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(i) E* is separable and 
(ii) E contains no infinite dimensional reflexive subspace. 

Proof. (i) Since U* is weak* compact and ext U * =  {fn}~=l is an F , ,  the 
Choquet-Bishop-de Leeuw theorem [6, esp. p. 30] shows that for each f in U* 
there is a probability measure/~ on ext U* (not necessarily unique) such that 

f ( x )  = f g(x)dl~(g) for each x in E. 
de xt U* 

Letting pn =/~(f~), we have/~ > 0, ~ / ~  = 1, and 

f ( x )  = ~#j , , (x )  for eachx in E. 

If  S is the set of all sequences {/zn} with ~l~ > 0 and ~/~n = 1, then S ~- 11 and for 
any {2n} in S, g = ~;t~f~ defines a member of U*. Thus, we have defined a map 
from the norm-separable space S onto U*; since 

l l f - e l i  = s u p ( i f ( x ) - g ( x ) [ :  ]lxtl < 1} < ~ l P ~ - 2 h i ,  

the map is norm-to-norm continuous and hence U* is norm separable, which 
implies the same for E*. 

(ii) If  F is an infinite dimensional reflexive subspace of E, then the set ext U~ of 
extreme points of the unit ball of F* is (by Theorem 1.1) uncountable. But each 
f in ext U ' c a n  be extended (by applying the Krein-Milman theorem to the convex 
set of all its norm one extensions) to an extreme point of U*, and this implies that 
ext U* is uncountable. 

The above result indicates that if ext U* is countable, then E* is very much 
like 11. In fact, the only examples we know (of space E* for which ext U* is count- 
able) are isomorphic to the /l-direct sum of a sequence of finite dimensional 
spaces. This suggests the following problem. 

PROBLEM. Suppose that E is a Banach space and that ext U* is countable. 
Do weak and norm convergence coincide for sequences in E*? 

The proof of the next corollary was suggested to us by Professor Harry Corson. 

COROLLARY 3.2. I f  K is a compact convex subset of a locally convex space 
and if ex tK is countable, then K is metrizable. 

Proof. Let E denote the sup-normed space of all continuous real-valued 
affine functions on K. The evaluation map of K into E* is an affine homeomor- 
phism (in the weak* topology) of K onto a subset (which we denote by K) of the 
unit ball U* of E*. It is readily verified that U* is the convex hull of K • ( - K) 
and hence ext U* is countable, so that E* is separable. In particular, E is separable, 
so U* is weak* metrizable, and the same is true for K. 
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The above corollary is a special case of a more general result which we had 

previously obtained by a different method. Much more general results have been 
communicated to us by both H. Corson and G. Choquet; the most general of  
these appears to be the following: (Choquet) If  K is compact convex and if ext K 
is the continuous image of a complete separable metric space, then Kis  metrizable. 
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